jueves, 30 de agosto de 2007

DDR

DDR,significa memoria de doble tasa de transferencia de datos en castellano. Son módulos compuestos por memorias síncronas (SDRAM), disponibles en encapsulado DIMM, que permite la transferencia de datos por dos canales distintos simultáneamente en un mismo ciclo de reloj. Los módulos DDRs soportan una capacidad máxima de 1Gb.

Fueron primero adoptadas en sistemas equipados con procesadores AMD Athlon. Intel con su Pentium 4 en un principio utilizó únicamente memorias RAMBUS, más costosas. Ante el avance en ventas y buen rendimiento de los sistemas AMD basados en DDR SDRAM, Intel se vio obligado a cambiar su estrategia y utilizar memoria DDR, lo que le permitió competir en precio. Son compatibles con los procesadores de Intel Pentium 4 que disponen de un FSB (Front Side Bus) de 64 bits de datos y frecuencias de reloj desde 200 a 400 MHz.
También se utiliza la nomenclatura PC1600 a PC4800, ya que pueden transferir un volumen de información de 8 bytes en cada ciclo de reloj a las frecuencias descritas.


Un ejemplo de calculo para PC-1600: 100Mhz x 2 Ciclos x 8 Bytes = 1600 Mbytes/Sec

Muchas placas base permiten utilizar estas memorias en dos modos de trabajo distintos: Single Memory Channel: Todos los módulos de memoria intercambian información con el bus a través de un sólo canal, para ello sólo es necesario introducir todos los módulos DIMM en el mismo banco de slots. Dual Memory Channel: Se reparten los módulos de memoria entre los dos bancos de slots diferenciados en la placa base, y pueden intercambiar datos con el bus a través de dos canales simultáneos, uno para cada banco.



















WI-FI


Wi-Fi (o Wi-fi, WiFi, Wifi, wifi) es un conjunto de estándares para redes inalámbricas basados en las especificaciones IEEE 802.11. Creado para ser utilizado en redes locales inalámbricas, es frecuente que en la actualidad también se utilice para acceder a Internet.

Wi-Fi es una marca de la Wi-Fi Alliance (anteriormente la WECA: Wireless Ethernet Compatibility Alliance), la organización comercial que adopta, prueba y certifica que los equipos cumplen los estándares 802.11.
Historia
El problema principal que pretende resolver la normalización es la compatibilidad. No obstante existen distintos estándares que definen distintos tipos de redes inalámbricas. Esta variedad produce confusión en el mercado y descoordinación en los fabricantes. Para resolver este problema, los principales vendedores de soluciones inalámbricas (3com, Airones, Intersil, Lucent Technologies, Nokia y Symbol Technologies) crearon en 1999 una asociación conocida como WECA (Wireless Ethernet Compability Aliance, Alianza de Compatibilidad Ethernet Inalámbrica) . El objetivo de esta asociación fue crear una marca que permitiese fomentar más fácilmente la tecnología inalámbrica y asegurase la compatibilidad de equipos.


Normalización
Hay tres tipos de Wi-Fi, basado cada uno de ellos en un estándar IEEE 802.11 aprobado. Un cuarto estándar, el 802.11n, está siendo elaborado y se espera su aprobación final para la segunda mitad del año 2007.
Los estándares IEEE 802.11b e IEEE 802.11g disfrutan de una aceptación internacional debido a que la banda de 2.4 GHz está disponible casi universalmente, con una velocidad de hasta 11 Mbps y 54 Mbps, respectivamente. Existe también un primer borrador del estándar IEEE 802.11n que trabaja a 2.4 GHz a una velocidad de 108 Mbps. Aunque estas velocidades de 108 Mbps son capaces de alcanzarse ya con el estandar 802.11g gracias a técnicas de aceleramiento que consiguen duplicar la transferencia teórica. Actualmente existen ciertos dispositivos que permiten utilizar esta tecnología, denominados Pre-N, sin embargo, no se sabe si serán compatibles ya que el estándar no está completamente revisado y aprobado.



Seguridad
Uno de los problemas más graves a los cuales se enfrenta actualmente la tecnología Wi-Fi es la seguridad. Un muy elevado porcentaje de redes son instaladas por administradores de sistemas y redes por su simplicidad de implementación sin tener en consideración la seguridad y, por tanto, convirtiendo sus redes en redes abiertas, sin proteger la información que por ellas circulan. Existen varias alternativas para garantizar la seguridad de estas redes.











Ventajas y desventajas
Una de las desventajas que tiene el sistema Wi-Fi es la pérdida de velocidad en relación a la misma conexión utilizando cables, debido a las interferencias y pérdidas de señal que el ambiente puede acarrear. Existen algunos programas capaces de capturar paquetes, trabajando con su tarjeta Wi-Fi en modo promiscuo, de forma que puedan calcular la contraseña de la red y de esta forma acceder a ella, las claves de tipo WEP son relativamente fáciles de conseguir para cualquier persona con un conocimiento medio de informática. La alianza Wi-Fi arregló estos problemas sacando el estándar WPA y posteriormente WPA2, basados en el grupo de trabajo 802.11i. Las redes protegidas con WPA2 se consideran robustas dado que proporcionan muy buena seguridad.
Los dispositivos Wi-Fi ofrecen gran comodidad en relación a la movilidad que ofrece esta tecnología, sobre los contras que tiene Wi-Fi es la capacidad de terceras personas para conectarse a redes ajenas si la red no está bien configurada y la falta de seguridad que esto trae consigo.
Cabe aclarar que esta tecnología no es compatible con otros tipos de conexiones sin cables como Bluetooth, GPRS, UMTS, etc.
otra desventaja de este es que solo puede ser ultilizada con conexiones a internet satelitales,es decir, que no funciona con redes telefonicas o por cable,ya que estas solo aguantaran un equipo.





ADS



ADSL son las siglas de Asymmetric Digital Subscriber Line ("Línea de Abonado Digital Asimétrica"). ADSL es un tipo de línea DSL. Consiste en una línea digital de alta velocidad, apoyada en el par simétrico de cobre que lleva la línea telefónica convencional o línea de abonado. Siempre y cuando el alcance no supere los 5,5 km.



Es una tecnología de acceso a Internet de banda ancha, lo que implica capacidad para transmitir más datos, lo que, a su vez, se traduce en mayor velocidad. Esto se consigue mediante la utilización de una banda de frecuencias más alta que la utilizada en las conversaciones telefónicas convencionales (300-3.400 Hz) por lo que, para disponer de ADSL, es necesaria la instalación de un filtro (llamado splitter o discriminador) que se encarga de separar la señal telefónica convencional de la que usaremos para conectarnos con ADSL.






Ventajas e inconvenientes de la tecnología ADSL






ADSL presenta una serie de ventajas y también algunos inconvenientes, respecto a la conexión telefónica a Internet estándar.





Ofrece la posibilidad de hablar por teléfono mientras se navega mediante la Red Internet, ya que, como se ha indicado anteriormente, voz y datos trabajan en bandas separadas, lo cual implica canales separados.
Usa una infraestructura existente (la de la red telefónica básica). Esto es ventajoso, tanto para los operadores que no tienen que afrontar grandes gastos para la implantación de esta tecnología, como para los usuarios, ya que el costo y el tiempo que tardan en tener disponible el servicio es menor que si el operador tuviese que emprender obras para generar nueva infraestructura.
Los usuarios de ADSL disponen de conexión permanente a Internet, al no tener que establecer esta conexión mediante marcación o señalización hacia la red. Esto es posible porque se dispone de conexión punto a punto, por lo que la línea existente entre la central y el usuario no es compartida, lo que además garantiza un ancho de banda dedicado a cada usuario, y aumenta la calidad del servicio. Esto es comparable con una arquitectura de red conmutada.
Ofrece una velocidad de conexión mucho mayor que la obtenida mediante marcación telefónica a Internet (Dial Up). Éste es el aspecto más interesante para los usuarios.


Inconvenientes

No todas las líneas telefónicas pueden ofrecer este servicio, debido a que las exigencias de calidad del par, tanto de ruido como de atenuación, por distancia a la central, son más estrictas que para el servicio telefónico básico. De hecho, el límite teórico para un servicio aceptable, equivale a 5,5 km
Debido al cuidado que requieren estas líneas, el servicio no es económico en países con pocas o malas infraestructuras, sobre todo si lo comparamos con los precios en otros países con infraestructuras más avanzadas.
El router necesario para disponer de conexión, o en su defecto, el módem ADSL, es caro (en menor medida en el caso del módem). No obstante, en España es frecuente que los ISPs subvencionen ambos aparatos.
Se requiere una línea telefónica para su funcionamiento, aunque puede utilizarse para cursar llamadas.

REDSI(Red Digital de Servicios Integrados).

Según la UIT-T podemos definirla como Red Digital de Servicios Integrados (RDSI o ISDN en inglés) como: una red que procede por evolución de la Red Digital Integrada (RDI) y que facilita conexiones digitales extremo a extremo para proporcionar una amplia gama de servicios, tanto de voz como de otros tipos, y a la que los usuarios acceden a través de un conjunto de interfaces normalizados.
Se puede decir entonces que es una red que procede por evolución de la red telefónica existente, que al ofrecer conexiones digitales de extremo a extremo permite la integración de multitud de servicios en un único acceso, independientemente de la naturaleza de la información a transmitir y del equipo terminal que la genere.
En el estudio de la RDSI se han definido unos llamados puntos de referencia que sirven para delimitar cada elemento de la red. Estos son llamados R, S, T, U y V, siendo el U el correspondiente al par de hilos de cobre del bucle telefónico entre la central y el domicilio del usuario, es decir, entre la central y la terminación de red TR1.


Principios de la RDSI

1Soporte de aplicaciones, tanto de voz como de datos, utilizando un conjunto de aplicaciones estándar.

2.Soporte para aplicaciones conmutadas y no conmutadas. RDSI admite tanto conmutación de circuitos como conmutación de paquetes. Además, RDSI proporciona servicios no conmutados con líneas dedicadas a ello.

3.Dependencia de conexiones de 64 kbps. RDSI proporciona conexiones de conmutación de circuitos y de conmutación de paquetes a 64 kbps. Este es el bloque de construcción
fundamental de la RDSI.

4.Inteligencia en la red. Se espera que la RDSI pueda proporcionar servicios sofisticados por encima de la sencilla situación de una llamada de circuito conmutado.

5.Arquitectura de protocolo en capas. Los protocolos para acceso a la RDSI presentan una arquitectura de capas que se puede hacer corresponder con la del modelo OSI.

6.Variedad de configuraciones. Es posible más de una configuración física para implementar RDSI. Esto permite diferencias en políticas nacionales, en el estado de la tecnología, y en las necesidades y equipos existentes de la base de clientes.


La interfaz del usuario

El usuario tiene acceso a la RDSI mediante un interfaz local a un flujo digital con una cierta velocidad binaria y un ancho de banda determinado.Hay disponibles flujos de varios tamaños para satisfacer diferentes necesidades. Por ejemplo un cliente residencial puede requerir sólo capacidad para gestionar un teléfono o un terminal de videotexto. Una oficina querrá sin duda conectarse a la a RDSI a través de una centralita (PBX) digital local, y requerirá un flujo de mucha más capacidad.

MODEM




Un módem es un equipo que sirve para modular y demodular (en amplitud, frecuencia, fase u otro sistema) una señal llamada portadora mediante otra señal de entrada llamada moduladora. Se han usado modems desde los años 60 o antes del siglo XX, principalmente debido a que la transmisión directa de la señales electrónicas inteligibles, a largas distancias, no es eficiente. Por ejemplo, para transmitir señales de audio por radiofrecuencia haría necesarias antenas de gran tamaño (del orden de cientos de metros) para su correcta recepción.




Cómo funciona


El modulador emite una señal denominada portadora. Generalmente, se trata de una simple señal eléctrica sinusoidal de mucho mayor frecuencia con que la señal moduladora. La señal moduladora constituye la información que se prepara para una transmisión (un módem prepara la información para ser transmitida, pero no realiza la transmisión). La moduladora modifica alguna característica de la portadora (que es la acción de modular), de manera que se obtiene una señal, que incluye la información de la moduladora. Así el demodulador puede recuperar la señal moduladora original, quitando la portadora.







Tipos de modems


Los modems han adquirido gran popularidad entre la gente de bajos conocimientos técnicos gracias a su uso en la PC, sin embargo los modems son usados en un sinfín de aplicaciones, como las comunicaciones telefónicas, radiofónicas y de televisión.


Se pueden clasificar de diferentes maneras, siendo una de ellas la clasificación por el tipo de moduladora empleada, teniendo así los modems digitales, en los cuales la moduladora es una señal digital y los modems analógicos, en donde la moduladora es una señal analógica.



Módulos de conmutación PLC










Adaptador para el cableado de sistema





































































miércoles, 29 de agosto de 2007

Refrigeracion liquida








La Refrigeración líquida es una forma de quitar el calor de los componentes. A diferencia de la refrigeración por aire, usa agua como transmisor del calor y es usada frecuentemente para la refrigeración de motores en automóviles. Otros usos incluyen la refrigeración del aceite lubricante.



Las ventajas de la refrigeración por agua en vez de por aire incluyen el mayor calor específico, densidad y conductividad térmica, de forma que el agua puede transmitir el calor a gran distancia con mucho menos flujo volumétrico y diferencia de temperatura. Esto lleva a la mayor ventaja de la refrigeración por agua sobre los disipadores tradicionales: la capacidad mucho mayor de transportar el calor desde la fuente hasta una superficie de enfriamiento secundaria, que permite radiadores grandes, de diseño óptimo, en lugar de pequeñas aspas ineficaces

montadas en o cerca del núcleo de la unidad central.


Una instalación típica de refrigeración por agua consta de un objeto a enfriar, una bomba que hace circular el agua y un radiador como disipador grande (posiblemente con un ventilador). Estos componentes están unidos por tubos.
Un componente opcional de la refirgeración por agua es un depósito(de agua), que ayuda a evitar la formación de burbujas de aire en el sistema. No obstante, si el sistema de refrigeración por agua está correctamente montado y sellado, no hay necesidad de un depósito, aunque éste sí que hace el sistema sea mucho más fácil y rápido de llenar. Otra opción es usar simplemente una pieza en T, que puede costar sólo 1$. Aunque ninguno de los dos sistemas es necesario, se recomienda uno de ellos para acelerar la operación de llenado y vaciado.

Refrigeración líquida en ordenadores



Desde hace pocos años, la refrigeración por agua ha llegado a ser importante para enfriar componentes del ordenador, especialmente la CPU. La refrigeración por agua se hace usando tres componentes primarios consistentes en un bloque de agua para CPU, una bomba de agua y un intercambiador de calor (usualmente un radiador unido a un ventilador). La refrigeración por agua no sólo permite un funcionamiento mejor y más silencioso para el overclocking, sino que al tener una mayor capacidad para disipar calor, permite usar procesadores que se calienten más.

Sistemas de refrigeración por agua "abiertos"


La mayoría de las torres de refrigeración industriales utilizan agua de ríos o pozos como fuente de agua fría. Las grandes torres de refrigeración de corriente inducida o forzada utilizadas en plantas industriales como centrales eléctricas, refinerías de petróleo, o plantas petroquímicas y de gas natural recirculan continuamente agua a través de intercambiadores de calor y otros equipos donde el agua absorbe el calor.

Refrigeración industrial por agua


La mayoría de las torres de refrigeración industriales utilizan agua de ríos o pozos como fuente de agua fría. Las grandes torres de refrigeración de corriente inducida o forzada utilizadas en plantas industriales como centrales eléctricas, refinerías de petróleo, o plantas petroquímicas y de gas natural recirculan continuamente agua a través de intercambiadores de calor y otros equipos donde el agua absorbe el calor. Ese calor es entonces expulsado a la atmósfera por la evaporación parcial del agua en torres de refrigeración donde el flujo de aire caliente ascendente se pone en contacto con el flujo de agua descendente. La pérdida de agua por evaporación hacia el aire expulsado a la atmósfera se reemplaza con agua "tratada" de un río, o agua de refrigeración. Como la evaporación del agua "pura" se reemplaza con agua "tratada" que contiene carbonatos y otras sales disueltas, una porción del agua del circuito se descarta continuamente como agua de desecho para prevenir la excesiva aparición de sales en el agua del circuito.

Refrigeración por Aire




Todo aparato eléctrico consume electricidad y esta energía se disipa en forma de calor. Nuestros pcs no son distintos, y hay elementos que, como la cpu, disipan gran cantidad de calor. Estos elementos hay que refrigerarlos.






Hablaremos de dos tipos de refrigeración, activa y pasiva. La activa se basa en que tiene algún elemento que consume energía (normalmente un ventilador) que hace que se refrigere el componente. La refrigeración pasiva consiste en que, precisamente, no tiene ningún elemento que consuma energía. La disipación pasiva se usa para elementos que no consumen mucho.






Pasamos a enumerar los dispositivos a refrigerar, los dividiremos en 2 partes, partes obligatorias a refrigerar y sólo opcionales






Componentes a refrigerar: En un pc, básicamente son 3, CPU, tarjeta gráfica y chipset






CPU: Es el componente del pc que más calor emana, por lo que es el principal elemento a refrigerar. Lo que hay que refrigerar es el core o núcleo de la CPU, porque es el elemento que produce el calor en este componente. El core puede estar a la vista, como en los procesadores Athlon XP, u oculto tras un heat-spreader, como en los Pentium 4.



TARJETA GRÁFICA: Otro componente del equipo que consume mucha electricidad, por lo que es importante refrigerar. Lo importante es refrigerar el chip gráfico, es lo que más consume. Las memorias también deben refrigerarse si la tarjeta no es de gama baja o le hacemos OC.


CHIPSET: De los tres mencionados es el que menos se calienta, muchas veces es suficiente con refrigerarlo pasivamente. Hay que refrigerar toda su superficie, si consta de 2 partes, sólo hay que refrigerar una, la otra es opcional.